
Securing Ruby on Rails
Web Applications
What You Need to Know

authored by Mike Milner

for IMMUNIO

/eBooks

www.immun.io | @immunioMike Milner

Securing Ruby on Rails Web Applications: What You Need to Know

authored by Mike Milner

for IMMUNIO

Co-founder and CTO
@secretmike

Securing Ruby
on Rails Web
Applications:
What You Need to

Know

Estimates say that there are 750,000 websites running

on Ruby on Rails, including immensely popular and

successful sites like Heroku, GitHub, Airbnb, and Hulu

to name just a few. Companies use this framework to

build web applications in part because it is very popular

with developers. It is open source, built on the dynamic

Ruby programming language which in turn is designed

with developer happiness in mind. It is designed to build

applications rapidly —to go quickly from concept to working

prototype. It’s also expandable with a large community of

shared open source libraries that can do basically anything

the developers need to do. That means this framework

gives developers in companies of all sizes flexibility around
building web applications, rapidly.

3

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

All web applications, including those built
with Ruby on Rails, suffer from the same
reality of all software—they are very likely
to be vulnerable to exploitation if no active
measures are put in place to reduce that
likelihood. Ruby on Rails applications
are vulnerable like applications written in
any other framework. It is important to
recognize that Ruby on Rails has a strong
track record of resolving security issues
quickly once identified.

Application security is a critical component
of any complete information security
program—it includes secure coding training,
software development lifecycle (SDLC),
architectural reviews, source code reviews,
penetration testing, and more. Application

security is necessary for web applications
built using any framework. In this report,
we examine some of the vulnerabilities that
impact web applications built on Ruby on
Rails and the best way to protect against
those risks. These concepts carry over for all
your web applications.

Ruby on Rails
applications are
vulnerable like
applications
written in any
other language or
framework.

4

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

RISKS
Even with the best efforts of the developers
and an adequately trained and staffed
information security team, no software
is completely secure. Developers and
information security staff are human. They
make mistakes or may lack interest or
expertise in certain areas. And application
security happens to be experiencing a
shortage of qualified talent. Meanwhile,
hackers are very creative and tenacious
humans. The threat landscape is ever
changing, as hackers work hard to find
ways to exploit whatever vulnerabilities
they can find to gain access to your system
and assets.

Ruby on Rails is no exception—there are
security risks with this framework. The most
common publicly known vulnerabilities are
known as CVEs—common vulnerabilities
and errors. As of 2016, a total of 78 of them
have been identified and fixed across all
versions of Rails (since the first version of
Rails appeared in 2005). Seventy percent of

these CVEs fall into five categories: cross-
site scripting (XSS), remote code execution
(RCE), and SQL injection, directory traversal,
and response splitting. These five threats
in particular are so common that your
web applications, programmed in Rails or
another platform, may still be vulnerable
because of other libraries you use, even if the
vulnerability did not originate in Rails.

However, those are not the only 78 errors or
vulnerabilities with Ruby on Rails. The CVE
list shows only those that have been reported,
repaired, and submitted to and published
by MITRE, the central non-profit that tracks
them. However, if someone doesn’t take the
time to report it according to a well defined
protocol, no CVE is issued. That means that
paying attention to CVEs is a good start. But
they are only the start of a complete web
application security practice.

Note that these 78 CVEs only refer to
vulnerabilities affecting the Ruby on Rails
framework itself, and hence include the

"70% of the 78
Rails CVEs fall
into 5 categories:
SQLi, XSS,
RCE, Directory
Traversal, and
Response
Splitting" ¹

¹ "2015, A Record Year For Vulnerabilities," Risk Based Secu-

rity, https://www.riskbasedsecurity.com/2016/03/2015-a-re-

cord-year-for-vulnerabilities/

5

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

³ "Ruby on Rails: Common Errors and Vulnerabilities," CVE Details, https://www.cvedetails.com/

vendor/12043/Rubyonrails.html

COMMON ACROSS ALL WEB
APPLICATIONS.

OWASP TOP TEN: ²

applications built using it. Since most web
applications include other libraries and code
that your own developers wrote, the web
application is at risk from other vulnerabilities,
as well.

Web applications developed on Ruby on Rails
are vulnerable to the same issues as those
built in any other language. Every framework,
including Rails, has security features to
mitigate risks baked into the framework.
However, there are always subtleties and
developer mistakes that account for some
remaining vulnerabilities.

² "2013 Top10 List," OWASP.org, https://www.owasp.org/

index.php/Top_10_2013-Top_10

 Denial of Service 14

 Execute Code 12

 XSS 23

 Sql Injection 12

 Http Response Splitting 2

THE VULNERABILITIES BY TYPE³

 Bypass Something 15

 Gain Information 3

 CSRF 3

 Overflow 1

 Directory Traversal 6

14

15

12

23

12

2

3

3

1

6

Injection
Broken Authentication and
Session Management
Cross Site Scripting (XSS)
Insecure Direct Object
References
Security Misconfiguration
Sensitive Data Exposure
Missing Function Level
Access Control
Cross Site Request
Forgery (CSRF)
Using Components with
Known Vulnerabilities
Unvalidated Redirects
and Forwards

A1.
A2.

A3.
A4.

A5.
A6.
A7.

A8.

A9.

A10.

6

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

CURRENT MODEL
The current model for Ruby on Rails
based web applications is to upgrade the
framework in your application every time
there is a new security release. That is,
when a new version of Rails is released
that addresses a new vulnerability, your
organization will have to rebuild the
application with this newest version of Rails.

For many companies, it is not possible to
upgrade their web applications each time
there is a security upgrade. For one thing,
it takes time and resources to upgrade
an application, especially a major version
upgrade (Ruby on Rails 2, 3, 4, 5)—we
have seen companies spend six months
and use the entire team to upgrade their
applications from Rails 3 to 4, for example.
These major releases are not necessarily
backward compatible. In other cases, a web
application can be frozen for new feature
development, in maintenance mode, or is
not scheduled to receive development work.
That application will not receive security

updates because it will not be updated to a
newer version of Rails.

What to Worry About
When considering the security of web
applications, there are three types of code
that organizations must consider: Code you
didn’t write, code you did write, and code that
no one wrote.

1. Code You Didn’t Write
This refers to applications programmed in
Ruby on Rails and all third-party libraries you
use on your web applications. In these cases,
you inherit the code, with any vulnerabilities,
and have to trust it. Because your engineers
are not owners of this code, they do not
understand the intricacies to test its security
posture and develop security fixes for it.

Currently, the best practice for dealing
with code you didn’t write is to run CVE
checkers to identify documented errors
and vulnerabilities. This is a critical part of
information security, but does not provide

When considering
the security of
web applications,
there are three
types of code that
organizations
must consider:
Code you didn’t
write, code you did
write, and code
that no one wrote.

7

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

complete security. Consider this: Existing
security products that are built using the CVE
list or the National Vulnerability Database
will discover only half of the vulnerabilities
reported in 2015.

2. Code You Did Write
This refers to applications developed in-
house on top of Ruby on Rails applications.
No matter how strong a programming team
you have, no one is exempt from making
mistakes, so errors and vulnerabilities are
highly likely unless active measures are taken
to reduce them.

The current best practice for securing code
you wrote in-house is to run static scanners
to analyze the code and highlight any coding
errors or potential vulnerabilities. Static
scanners designed for Ruby have limitations,
as with all dynamic languages. However,
there is one scanner designed specifically for
Rails that stands out and should be in your
security arsenal: Brakeman. After running

static scanners, the next step would be to
run a penetration test, where an attack is
attempted to help identify vulnerabilities.

3. Code No One Wrote
This refers to security features that are
not part of your code, nor the libraries and
components that you are using to build the
application. You do not have access to the
source code, and thus you risk inheriting
any vulnerabilities this code may have. For
example, most login / authentication libraries
do not have the security features required to
resist certain types of botnet attacks, such
as a million-machine botnet trying to abuse
the login function (aka, credential stuffing).
The current best practice in this area is to
address each of these threats individually,
such as special network devices for stopping
botnet attacks, or user behavioral analysis for
detecting stolen sessions.

Only half of the
vulnerabilities
end up becoming
CVE’s.

www.immun.io | @immunioMike Milner

Securing Ruby on Rails Web Applications: What You Need to Know

8

Securing Ruby on Rails
Web Applications
Securing web applications using today’s
best practices and technology revolves
around finding vulnerabilities in the code and
remediating them:

• CVE checker
Analyzing the libraries used to identify one
of the published common vulnerabilities
and errors (CVE)

• Static scanner
Analyzing source code to identify
vulnerabilities

• Dynamic testing
1. Penetration testing
Attempting to attack the system as a
way to identify vulnerabilities or errors
2. Dynamic scanner
Analyzing the application while it is
running in real time
3. Bug bounty
Rewarding individuals who find and
report errors or vulnerabilities in your
web application

• Web application firewall (WAF)
Filtering input to the application to identify
and prevent attacks

Location of Vulnerability

Your application

Ruby on Rails

3rd party libraries

Activity to identify
Vulnerabilities

Static testing
Dynamic testing

CVE checker

CVE checker

Addressing Vulnerability

Code remediation

Upgrade Rails

Upgrade library

Challenges

• Requires highly skilled talent
• Does not usually find the subtle bugs
• Fixing bugs may take months or years
 depending on the organization

• Not always feasible (i.e., applications
 in maintenance mode, major release
 upgrade)
• 0 days

• Not always feasible (i.e., applications
 in maintenance mode)
• 0 days

The value of
runtime application
self-protection
(RASP) is that
this new class
of technology is
preventative.

9

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

TODAY’S STATE OF THE ART: RASP
As described above, there are serious
drawbacks in the current security tools
for Ruby on Rails web applications. The
next generation of protection—runtime
application self-protection—plugs the holes
those security procedures leave in your web
applications.

Today’s state of the art technology for
dealing with security vulnerabilities shifts
the focus from finding all vulnerabilities,
and remediating fast, to reducing the risk of
a breach by blocking the exploitation.

The value of runtime application self-
protection (RASP) is that this new class of
technology is preventative. It does not just
identify vulnerabilities in the application; it
knows how the application works when it is
healthy, when it is dealing with acceptable
traffic patterns. So it can easily identify
attacks and unacceptable traffic without
having to understand the exact nature of
the threat.

Today’s state of
the art technology
for dealing
with security
vulnerabilities
shifts the focus
from finding all
vulnerabilities, and
remediating fast,
to reducing the
risk of a breach
by blocking the
exploitation.

EXISTING
APPLICATION STACK

Data Store

Authentication

Middleware/Plugin

HTTP Server

Application Code

Optional
Direct

Integration
Library

HOOK

HOOK

HOOK

HOOK

ENCRYPTED LINK
TO IMMUNIO

 Link
Manager

Reports

Rules

Rules
Processor

IN-APPLICATION AGENT

How RASP Actually Works

10

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

Because it effectively wraps itself around
the application, RASP protects in real
time and can protect against attacks from
outside the perimeter of the firewall, as well
as from within inner trust boundaries.

RASP is flexible and easy to implement.
It is adaptive and updates automatically
when the code is updated. And it does not
require access to the source code, meaning
it protects all three types of code—the code
you wrote, that others wrote, and that no
one wrote.

RASP makes your web applications
practically impenetrable. It can detect
and render unexploitable all 5 of the Ruby
on Rails vulnerabilities that have been
disclosed in the last decade.

1. SQL injection
2. Code execution
3. XSS
4. Directory traversal
5. HTTP response splitting

In addition to protecting against known
vulnerabilities, RASP protects web
applications against the unknown. And
secures the application until you have the
chance to upgrade to a new version of Ruby
on Rails.

In addition
to protecting
against known
vulnerabilities,
RASP protects
web applications
against the
unknown.

11

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

Zero Days in Rails
Recent Ruby on Rails hacks that RASP
protects against:

• CVE-2013-0263
This vulnerability was caused by a
timing attack and impacts anyone in the
world with a Ruby on Rails server. This
bug was present in the code since 2009
and fixed in 2013.

• CVE-2013-0156
Multiple vulnerabilities (including
SQL injection, the ability to bypass
authentication, and the ability to inject
and execute any code). This object
injection bug threatened any site built
on any version of Ruby on Rails.

• Other CVEs in early 2016
8 errors and vulnerabilities to Ruby on
Rails were disclosed in one day (including
cross-site scripting, mass assignment,
and directory traversal). These were
classified as CVEs, are potentially high
impact and required an upgrade to
protect against.

WAF Isn’t Enough
Web application firewalls (WAF) protect
against many common attack vectors, such
as SQL injection and cross-site scripting. Yet
there are significant drawbacks.

Web application firewalls:
• Are extremely easy to bypass, since in

almost all deployments they are running
against known signatures.

• Are complicated to set up properly and
can take weeks or months to set up for
just one application.

• Work best with traditional web
applications and tend to have blind spots
when it comes to modern applications
(built with AJAX, HTML5, WebSockets,
microservices architecture, etc.).

• Need to be in the network path: one must
route traffic through them, which may
not always be doable when assets are on
different networks or cloud providers.

When comparing even the leading WAF
providers to RASP technology, the gap in

A best in class
security program
includes a variety
of tools to address
errors and
vulnerabilities in
web applications.

12

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

accuracy of detection and ease of bypass
is apparent. In one industry benchmark, the
leading WAF provider was only able to detect
60% of attempted attacks, while another
vendor only detected 20%. Meanwhile, the
RASP provider detected and stopped 100% of
the attacks, with a much lower false positive
rate than both vendors.

More info on the report can be found here.

Benefits of RASP
Runtime application self-protection has
many benefits for organizations running web
applications programmed with Ruby on Rails.

• Reduces the risk for a significant number
of OWASP security vulnerabilities,
including true protection against zero days

• Secures application beyond just code
errors, including user security, botnet
attacks, and monitoring

• Reduces urgency for patching or upgrading
• Enables more effective use of information

security team members, and even enables

some companies to have few or no
dedicated information security staff

• Augments to existing information security
measures like penetration testing, bug
bounty programs, CVE checkers, etc.

• Difficult to bypass
• Can be deployed in minutes and configured

in only hours
• Works anywhere--cloud, data center,

behind the firewall, etc.

Ruby on Rails is a flexible and fast open
source application that developers like
to work with. There are 750,000 websites
running web applications programmed with
Ruby on Rails today and more to come. For
information security teams, that means
more potentially vulnerable web applications
to secure.

A best in class security program includes
a variety of tools to address errors and
vulnerabilities in web applications. That includes
using runtime application self-protection on
applications developed on Ruby on Rails.

13

Securing Ruby on Rails Web Applications: What You Need to Know

Mike Milner www.immun.io | @immunio

A fix for the identified security
issue isdeveloped. Now the world
needs to update, rebuild, and deploy.

Disclosed
Vulnerability / Patch
developed

Patch
Released

Risk

Risk
Eliminated

Risk
Eliminated

Deploy IMMUNIO

Tune IMMUNIO
Identified
Vulnerability

Not all identified vulns are actually
reported... Some remain in the hands
of blackhats as 0-days, some
developers will just not report on them.

Vulnerability
Discovered via pen testing, static
analysis, architectural review, etc…
But, not all vulns are discovered.
Some lurk there for years...

Known
Vulnerability

Not all reported vulnerabilities become
CVE's, it is estimated that 60% of
vulnerabilites reported never become
CVE’s. i.e. less than half become
detectable by CVE checkers.

Discovered

Reported

Actioned

Fixed

CURRENT MODEL IMMUNIO

CURRENT MODEL:
Usually months or
years to eliminate

risks, lots of manual

effort, highly skilled

labour, and relies on

finding all risks

IMMUNIO MODEL:
Days or weeks,

very little manual

effort, no need for

lots of highly skilled

techies, and does

not need to find all
vulnerabilities

www.immun.io | @immunioMike Milner

Securing Ruby on Rails Web Applications: What You Need to Know

14

ABOUT IMMUNIO

IMMUNIO is a pioneer in real-time web

application security (RASP), providing

automatic detection and protection

against application security vulnerabilities.

The company’s mission is to make

truly effective real-time web protection

technology easily available and widely

deployed, and by doing so, stop the biggest

source of breached data records.

For more information,

visit https://www.immun.io/

or follow @immunio.

www.immun.io | @immunio

RASP protects against significant known
and identified errors, as well as protecting
against new and evolving threats as hackers
get more creative.

If you already have an application security
practice, consider adding runtime
instrumentation. Adding RASP to your
information security program is the best
way to secure your Ruby on Rails web
applications and, by extension, your users.

